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Boundary conditions of applicability of the complex mass-exchange model to forward, backward, and cross
motions of the vapor and liquid phases in rectification have been found. Four variants of mass exchange
which are the limits of the complex model have been considered. The limiting values of the distances h and
h1 from the site of injection of the phases at which the compositions in ideal and real plates are equalized
have been computed. The relations between the basic technological parameters of the rectification process
under the boundary conditions have been obtained.

The complex model [1–3] differs from the well-known models of Murphree and Hausen [4–6] in that the
compositions of the flows on ideal and real plates are equalized at a certain distance h (for a vapor) and h1 (for a
liquid) from the site of injection of the phases. In the Murphree model, in analyzing the efficiency in the vapor phase
and the liquid these distances take on the values

h = 0 ,   h1 = 1 ; (1)

h = 1 ,   h1 = 0 ; (2)

in the Hausen model, they are

h = 0 ,   h1 = 0 (3)

and in the hypothetical model obtained from analysis of the possible variants of interrelationship between the ideal and
real plates, these distances are equal to

h = 1 ,   h1 = 1 . (4)

Furthermore, the complex model provides for the variant of separation of an ideal mixture in which the dis-
tances h and h1 are equal to

h = h1 = 0.5 . (5)

In [7], as a result of the analysis of the interrelationship between individual parameters we have proposed the
relation

h = h1 = 
1

m + 1
 . (6)

Thus, in the complex model the distances h and h1 depend on the coefficient of phase equilibrium (5). For
nearly ideal mixtures in which m tends to unity, h and h1 are determined from formula (5). In separation of mixtures
with an increasing coefficient of phase equilibrium, the distances h and h1 decrease and become equal to zero in the
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limit where m tends to infinity, which is reflected by formula (3). In separation of a mixture with a decreasing coef-
ficient of phase equilibrium, the distances h and h1 increase and become equal to unity when m = 0, as is observed
in the hypothetical model to which equalities (4) belong. In the case of separation of mixtures in which the coefficient
of phase equilibrium simultaneously increases as applied to the vapor phase and decreases when mass exchange in the
liquid is analyzed, the distance h decreases and the distance h1 increases; finally, they take on values in accordance
with (1), which is expressed by the Murphree model in analyzing the efficiency in the vapor phase. In the case of the
reverse trend whose limit is formula (2), the Murphree model is obtained in analyzing the efficiency in the liquid.

The decrease in h and the increase in h1 with increase in the coefficient of phase equilibrium or their opposite
changes with decrease in m point to the discrepancy between these regions of the complex model and the correspond-
ing boundary cases, i.e., the Murphree model, in analyzing the efficiency in the vapor phase and the liquid, since mass
exchange occurs in one mixture and the intensification of the release of a highly volatile component from the liquid
is equivalent to the rate of enrichment of the vapor phase with this component; this must result in a simultaneous de-
crease in h and h1. However, the efficiency of mass exchange in the Murphree model has received the widest accep-
tance, in direct form or indirectly, in analyzing mass-exchange processes despite its drawbacks noted by different
researchers. Therefore, both variants of the Murphree model are involved in analysis interchangeably with others.

The Murphree and Hausen models are applicable in complete mixing of the liquid on a plate or in forward
(concurrent) motion of the flows. In [2, 3], the conditions of interrelationship between the ideal and real plates which
correspond to the Murphree and Hausen model have been extended to the backward (countercurrent) and cross motions
of the vapor and the liquid. The corresponding conditions of interrelationship between the ideal and real plates are
specified by variants. The first two variants are characterized by the conditions of the Murphree model (1) and (2), the
third variant is characterized by those of the Hausen model (3), and the fourth variant is characterized by the condi-
tions of the hypothetical model (4).

The absence of the real values of the efficiency in certain variants of mass exchange has been revealed in [1–
3]. In this connection, it is expedient to find the validity range for the entire complex model and its individual, bound-
ary variants, in particular, in forward flow, backward flow, and cross flow of the vapor and the liquid.

For the forward motion of the phases, from formula (14) [1] we have derived the dependence

xn−1 − 
yn−1

m
xn − xn−1

 Ef = 
L

mV
 + (1 − Ef) 




1 − h 

L
mV

 − h1



 . (7)

By subtracting EfL ⁄ (mV) from the left-hand and right-hand sides (7) and with account for the material-balance equa-
tion L(xn − xn−1) = V(yn − yn−1), we have obtained the relation

xn−1 − 
yn

m
xn − xn−1

 Ef = (1 − Ef) 




L
mV

 + 1 − h 
L

mV
 − h1




 . (8)

After the addition of Ef to both sides of formula (7), we have found the expression

xn − 
yn−1

m
xn − xn−1

 Ef = 
L

mV
 + 1 − (1 − Ef) 




h 

L
mV

 + h1



 . (9)

Subtraction of Ef[L ⁄ (mV) − 1] from both sides of (7) leads to the formula

xn − 
yn

m
xn − xn−1

 Ef = 1 + (1 − Ef) 




L
mV

 − h 
L

mV
 − h1




 . (10)

For the backward motion of the phases, from (3) [2] we have derived the relation
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xn−1 − 
yn−1

m
xn − xn−1

 Eg = 
L

mV
 − Eg − (1 − Eg) 




h 

L
mV

 + h1



 . (11)

In just the same manner as in the case of forward flow, we have derived from (11) equations which are analogous to
(8)–(10) in backward flow:

xn−1 − 
yn

m
xn − xn−1

 Eg = (1 − Eg) 




L
mV

 + 1 − h 
L

mV
 − h1




 − 1 , (12)

xn − 
yn−1

m
xn − xn−1

 Eg = 
L

mV
 − (1 − Eg) 




h 

L
mV

 + h1



 , (13)

xn − 
yn

m
xn − xn−1

 Eg = (1 − Eg) 




L
mV

 − h 
L

mV
 − h1




 . (14)

In cross motion of the phases, by analogy with (7)–(10) we have derived from formula (7) [3] the dependences

xn−1 − 
yn−1

m
xn − xn−1

 Ek = 
L

mV
 − 

1
2

 + (1 − Ek) 



1 − h 

L
mV

 − h1



 , (15)

xn−1 − 
yn

m
xn − xn−1

 Ek = (1 − Ek) 




L
mV

 + 1 − h 
L

mV
 − h1




 − 

1
2

 , (16)

xn − 
yn−1

m
xn − xn−1

 Ek = 
L

mV
 + 

1
2

 − (1 − Ek) 



h 

L
mV

 + h1



 , (17)

xn − 
yn

m
xn − xn−1

 Ek = (1 − Ek) 




L
mV

 − h 
L

mV
 − h1




 + 

1
2

 . (18)

Upon substitution of the values of the distances h and h1 from (1)–(5) into Eqs. (7)–(18), we have derived
the ratios of the concentration difference for all the variants of mass exchange in forward flow, backward flow, and
cross flow of the interacting phases (Table 1).

Table 1 shows that in forward flow, the considered ratios of the concentration difference in all the variants
have positive values. In the second variant, ratio b, which can be negative for Ef > 0.5, is somewhat doubted in this
respect; this points to certain limitations.

In the fourth variant, the ratio of the concentration difference is independent of the efficiency. The equality of
ratio b to zero and of ratio d to unity in combination with the conditions of equilibrium of the flows after the ideal
plate yn

∗  = mxn−1
∗  points to the fact that, in the fourth variant, the real plate is analogous to the ideal plate. Conse-
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TABLE 1. Boundary Conditions of the Complex Model for Different Forms of Organization of Flows

Ratio

Variants of mass exchange

1
(h = 0; h1 = 1)

2
(h = 1; h1 = 0)

3
(h = 0; h1 = 0)

4
(h = 1; h1 = 1)

ideal mixture
(h = h1 = 0.5)

Forward flow

a) 
xn−1 − 

yn−1

m
xn − xn−1

L
mV

 
1

Ef1

L
mV

 + 1
Ef2

 − 1 



L
mV

 + 1


 

1
Ef3

 − 1 L
mV

1
2

 


L
mV

 


1
Ef,m

 − 1


 + 

1
Ef,m

 − 1



b) 
xn−1 − 

yn

m
xn − xn−1

L
mV

 


1
Ef1

 − 1



1
Ef2

 − 1 



L
mV

 + 1


 


1
Ef3

 − 1



0
1
2

 


L
mV

 + 1


 


1
Ef,m

 − 1



c) 
xn − 

yn−1

m
xn − xn−1

L
mV

 
1

Ef1
 + 1

L
mV

 + 1
Ef2





L
mV

 + 1


 

1
Ef3

L
mV

 + 1
1
2

 


L
mV

 + 1


 


1
Ef,m

 + 1



d) 
xn − 

yn

m
xn − xn−1

L
mV

 


1
Ef1

 − 1


 + 1

1
Ef2

L
mV

 


1
Ef3

 − 1


 + 

1
Ef3

1
1
2

 


L
mV

 


1
Ef,m

 − 1


 + 

1
Ef,m

 + 1



Backward flow

a) 
xn−1 − 

yn−1

m
xn − xn−1





L
mV

 − 1


 

1
Eg1

L
mV

 − 1
L

mV
 

1
Eg3

 − 1
L

mV
 − 

1
Eg4

1
2

 


L
mV

 − 1


 


1
Eg,m

 + 1



b) 
xn−1 − 

yn

m
xn − xn−1

L
mV

 


1
Eg1

 − 1


 − 

1
Eg1

–1
L

mV
 


1
Eg3

 − 1


 − 1 − 

1
Eg4

1
2

 





L
mV

 − 1


 

1
Eg,m

 − 
L

mV
 − 1




c) 
xn − 

yn−1

m
xn − xn−1





L
mV

 − 1


 

1
Eg1

 + 1 L
mV

L
mV

 1
Eg3

L
mV

 − 
1

Eg4
 + 1 1

2
 





L
mV

 − 1


 

1
Eg,m

 + 
L

mV
 + 1




d) 
xn − 

yn

m
xn − xn−1





L
mV

 − 1


 


1
Eg1

 − 1



0
L

mV
 


1
Eg3

 − 1



1 − 
1

Eg4

1
2

 


L
mV

 − 1


 


1
Eg,m

 − 1



Cross flow

a) 
xn−1 − 

yn−1

m
xn − xn−1





L
mV

 − 
1
2




 

1
Ek1

L
mV

 + 
1

2Ek2
 − 1 




L
mV

 + 
1
2




 

1
Ek3

 − 1
L

mV
 − 

1
2Ek4

1
2

 


L
mV

 


1
Ek,m

 + 1


 − 1




b) 
xn−1 − 

yn

m
xn − xn−1

L
mV

 


1
Ek1

 − 1


 − 

1
2Ek1

1
2Ek2

 − 1
L

mV
 


1
Ek3

 − 1


 + 

1
2Ek3

 − 1 − 1
2Ek4

1
2

 


L
mV

 


1
Ek,m

 − 1


 − 1




c) 
xn − 

yn−1

m
xn − xn−1





L
mV

 − 
1
2




 

1
Ek1

 + 1
L

mV
 + 

1
2Ek2





L
mV

 + 
1
2




 

1
Ek3

L
mV

 − 
1

2Ek4
 + 1

1
2

 


L
mV

 


1
Ek,m

 + 1


 + 1




d) 
xn − 

yn

m
xn − xn−1

L
mV

 


1
Ek1

 − 1


 − 

1
2Ek1

 + 1 1
2Ek2

L
mV

 


1
Ek3

 − 1


 + 

1
2Ek3

1 − 
1

2Ek4

1
2

 


L
mV

 


1
Ek,m

 − 1


 + 1



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quently, the complex model in forward flow holds throughout the range of variation of the distances h and h1 from
zero to values less than unity.

The data of Table 1 show that in the case of backward flow the ratios of the concentration difference in the
second variant are independent of the efficiency and the efficiency cannot be determined. The equality of ratio b to
minus unity and of ratio d to zero together with the conditions of equilibrium of the vapor and liquid phases on the
ideal plate yn

∗  = mxn−1
∗  show the identity of the ideal and real plates in this variant. Furthermore, the negative value of

ratio b indicates that in the second variant we have yn/m > xn−1.
In the fourth variant, the concentration ratios b and d have negative values and ratios a and c can be the

same for L/(mV) < 1 and Eg[L ⁄ (mV) + 1] < 1 respectively. The reason is that the coefficient of phase equilibrium tends
to zero, h and h1 tend to unity, and the concentration (divided by m) of one component of the mixture in the vapor
phase exceeds the corresponding content of this component in the liquid.

In the first and third variants of mass exchange and in the variant of separation of an ideal mixture (h = h1
= 0.5), the negative ratios of the concentration differences are not observed in explicit form. However, as applied to
the first variant, we must note the following. For this variant one observes the coincidence of the compositions of the
vapor arriving at ideal and real plates and of the liquid flowing from them. On the y–x plot (Fig. 1), the equilibrium
line passes through points A and C with coordinates yn−1

∗ , xn−1
∗ , and yn

∗ , xn
∗  respectively. The working straight line

TABLE 2. Limiting Values of h and h1 in the Complex Model

Ratio
Form of organization of flows

Forward flow Backward flow Cross flow

a) 
xn−1 − 

yn−1

m
xn − xn−1

L
mV

 + 1 − Ef





L
mV

 + 1


 (1 − Ef)

L
mV

 − Eg





L
mV

 + 1


 (1 − Eg)

L
mV

 + 
1
2

 − Ek





L
mV

 + 1


 (1 − Ek)

b) 
xn−1 − 

yn

m
xn − xn−1

1

L
mV

 − 




L
mV

 + 1


 Eg





L
mV

 + 1


 (1 − Eg)

L
mV

 + 
1
2

 − 




L
mV

 + 1


  Ek





L
mV

 + 1


 (1 − Ek)

c) 
xn − 

yn−1

m
xn − xn−1

1
1 − Ef

L
mV





L
mV

 + 1


 (1 − Eg)

L
mV

 + 
1
2





L
mV

 + 1


 (1 − Ek)

d) 
xn − 

yn

m
xn − xn−1

L
mV

 (1 − Ef) + 1





L
mV

 + 1


 (1 − Ef)

L
mV

L
mV

 + 1

L
mV

 (1 − Ek) + 
1
2





L
mV

 + 1


 (1 − Ek)

Fig. 1. Variation in the concentration in the second variant of mass exchange
for backward flow.
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passes through points A and B with coordinates yn−1, xn−1, and yn, xn respectively. As the efficiency increases to unity,
point B, moving along the straight line AB, will coincide with point C, which belongs to the equilibrium line. If we
allow for the rectilinearity of the equilibrium line on the portion of variation of the concentrations on the plate, we
obtain the coincidence of the working and equilibrium lines, i.e., the same angle of inclination of these lines. As a
consequence, the ratios of the concentration difference a and b are equal to zero and it is impossible to determine the
efficiency in this variant (just as in the second variant). This circumstance together with certain limitations of the sec-
ond variant in forward flow (ratio b) emphasizes the lack of logic in the conditions of interrelationship between the
ideal and real plates inherent in the Murphree model and eliminates the first and second variants of mass exchange
from the number of working models in the case of backward flow.

Thus, we should assume the third and fourth variants to be the limiting cases in backward flow. Separation
of an ideal mixture can be considered to be the intermediate state of the complex model between these variants.

In cross flow (Table 1), ratio b has a negative value in the fourth variant and the analogous value is possible
for ratio d, when Ek > 0.5, which points to the excess of yn

 ⁄ m over xn−1 and, when Ek < 0.5, also over xn. In the sec-
ond variant, the value of ratio b can be negative when Ek > 0.5. Consequently, the distances h and h1 must take on
lower values and cannot be equal to unity. Other ratios in the indicated variants and in other variants are assumed to
be positive.

Fig. 2. Features of the variation in the concentration for backward flow (I) and
cross flow (II) in the fourth variant of mass exchange on ideal (dashed lines)
and real (solid lines) plates: a) xn > yn

 ⁄ m and xn−1 < yn−1
 ⁄ m; b) xn < yn

 ⁄ m and
xn−1 > yn−1

 ⁄ m.
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In backward and cross flows, as has been noted above, the ratios of the concentration differences a–d can
have negative values. In this connection, it is expedient to find the limiting values of the distances h and h1 for the
indicated forms of organization of the flows, including forward flow, by equating all the ratios in question to zero.
The sought values derived from the right-hand sides of formulas (7)–(18) are given in Table 2.

In forward flow, the limiting values of h and h1 are equal to unity (ratio b) or exceed it, which is confirmed
by the absence of negative values (Table 2). Consequently, these distances can take on any real values (except the lim-
iting unity) in the case of forward flow.

In backward and cross motions of the vapor and the liquid, the limiting values of h and h1 can be less than
unity, which points to the possibility of obtaining negative ratios of the concentration differences in the case where
these distances exceed the values indicated in Table 2. In backward flow and cross flow, there can be the situations
given in Fig. 2 when one ratio is positive and the other is negative. The same situation is also observed for other ra-
tios of the concentration differences which are not given in Fig. 2. This circumstance should be taken into account in
selecting the determining values of the distances h and h1, which, probably, must be lower that the minimum value
(ratio b) for the coefficient of phase equilibrium exceeding unity and higher than the maximum value (ratio c) for
m < 1. In the interval between the indicated values of the distances, preference should, possibly, be given to the ratio
or its numerator employed in running calculations.

We emphasize that the distances h and h1 themselves are calculated from formula (6) and the analysis made
is necessary for determining the limits of the complex model. In substituting the values of these distances from (6)

TABLE 3. Limiting Values of the Technological Parameters

Ratio Parameter
Form of organization of flows

Forward flow Backward flow Cross flow

a) 
xn−1 − 

yn−1

m
xn − xn−1

L
mV

− 
m (1 − Ef)

m + Ef

mEg + 1

m + Eg

mEk − 
m − 1

2
m + Ek

E
m + 

L
V

m − 
L

mV

L
V

 − 1

m − 
L

mV

L
V

 + 
m−1

2

m − 
L

mV

b) 
xn−1 − 

yn

m
xn − xn−1

L
mV

–1
mEg + 1

m (1 − Eg)
mEk − 

m − 1
2

m (1 − Ek)

E 1

L
V

 − 1

L
V

 + m

L
V

 + 
m−1

2
L
V

 + m

c) 
xn − 

yn−1

m
xn − xn−1

L
mV

–1
1 − Eg

m + Eg − 
Ek + 

m − 1
2

m + Ek

E −m − 

L
V

 − 1

L
mV

 + 1
− 

L
V

 + 
m−1

2
L

mV
 + 1

d) 
xn − 

yn

m
xn − xn−1

L
mV

− 
m + Ef

m (1 − Ef)
1
m − 

Ek + 
m − 1

2
m (1 − Ek)

E

L
V

 + m

L
V

 − 1
1

L
V

 + 
m−1

2
L
V

 − 1
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into formulas (7)–(18), we obtain the limiting relations between the efficiency and L/(mV) (Table 3) for the forms of
organization of the flows in question. In particular, in forward flow, there are no limitations imposed on the values of
L/(mV) since this ratio is obviously higher than the values indicated in Table 3. The efficiency in forward flow can
also vary within its natural limits without any limitations. In backward flow and cross flow, it is important to track
the relation of the efficiency and L/(mV). The excess of these values over the tabulated values points to the possibility
of obtaining negative ratios of the concentration difference. On the whole, using the data of Table 3 one can evaluate
the efficiency of mass exchange and the ratio of the flows.

Thus, the results of the analysis made enable one to estimate the values of the most important technological
parameters and to determine the validity range for the complex model.

NOTATION

E, efficiency of the plate; h and h1, dimensionless distances from the site of injection of the vapor and the
liquid, respectively, to the surface of equality of the concentrations of the phases on ideal and real plates; L, molar
flow of the liquid; m, coefficient of phase equilibrium; V, molar flow of the vapor; x and y, concentrations of the
highly volatile component in the liquid and the vapor respectively. Subscripts: g, backward flow; k, cross flow; m, val-
ues of the parameters for h = h1 = 0.5; n, No. of the plate in question; n − 1, No. of the preceding plate in the direc-
tion of motion of the vapor; f, forward flow; ∗ , ideal conditions.
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